Интеграция опросных данных и цифровых следов: обзор основных методологических подходов
Научная статья
-
Анастасия Владимировна Сапонова
Национальный исследовательский университет «Высшая школа экономики», Москва, Россия
asaponova@hse.ru
ORCID ID https://orcid.org/0000-0002-9393-3509
Elibrary Author_id 1090985ResearchID AAD-1892-2021
- Сергей Павлович Куликов Национальный исследовательский университет «Высшая школа экономики», Москва, Россия spkulikov@hse.ru ORCID ID https://orcid.org/0000-0001-8951-0493
Аннотация
Цель настоящей статьи – рассмотреть основные методологические подходы к интеграции опросных данных и цифровых следов, которые применяются в социологических исследованиях. В работе обсуждается методологическая дискуссия о месте больших цифровых данных в концептуальном аппарате социальных наук. Предпринимается попытка проблематизировать практику интеграции данных опросов и цифровых следов через концепцию «реактивного – нереактивного» измерения. Обозначаются возможные функции цифровых следов (на примере данных социальных медиа) при встраивании в дизайн исследования. На основе трех ведущих исследовательских направлений (изучения медиапотребления, медиаэффектов и электорального поведения) были продемонстрированы общие методологические принципы интеграции данных разной природы, также обозначены возможные перспективы развития этих подходов. В статье обсуждается широкий круг методологических вопросов: проблемы валидности связывания данных, потенциальные угрозы валидности цифровых следов, возможности по совершенствованию опросного инструментария, обогащению данных, поиску новых валидных индикаторов социально-политических процессов и кросс- валидации результатов исследований. Отдельно рассматриваются практики интеграции административных данных.Ключевые слова:интеграция данных, связывание данных, большие данные, нереактивные методы, цифровые следы, опросные данныеБиографии авторов
Анастасия Владимировна Сапонова, Национальный исследовательский университет «Высшая школа экономики», Москва, РоссияПреподаватель, аспирантка кафедры анализа социальных институтовСергей Павлович Куликов, Национальный исследовательский университет «Высшая школа экономики», Москва, РоссияАспирант кафедры анализа социальных институтовЛитература
Golder S.A., Macy M.W. Digital Footprints: Opportunities and Challenges for Online Social Research // Annual Review of Sociology. 2014. Vol. 40, No. 1. P. 129–152. DOI: 10.1146/annurev-soc-071913-043145
Salganik M.J., Watts D.J. Web-Based Experiments for the Study of Collective Social Dynamics in Cultural Markets // Topics in Cognitive Science. 2009. Vol. 1, No. 3. P. 439–468. DOI: 10.1111/j.1756-8765.2009.01030.x
Anderson C. The End of Theory: The Data Deluge Makes the Scientific Method Obsolete // Wired. 23.06.2008. URL: https://www.wired.com/2008/06/pbtheory/ (дата обращения: 17.04.2022).
Майер-Шенбергер В., Кукьер К. Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим / Пер. с англ. И. Гайдюк. М.: Манн, Иванов и Фербер, 2014. 240 с.
Boyd d., Crawford K. Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon // Information, communication & society. 2012. Vol. 15, No. 5. P. 662–679. DOI: 10.1080/1369118X.2012.678878
Губа К.С. Большие данные в социологии: Новые данные, новая социология? // Социологическое обозрение. 2018. № 17 (1). С. 213–236. DOI: 10.17323/1728-192X-2018-1-213-236
McFarland D. A., Lewis K., Goldberg A. Sociology in the era of big data: The ascent of forensic social science // The American Sociologist. 2016. Vol. 47, No. 1. P. 12–35. DOI: 10.1007/s12108-015-9291-8
Burrows R., Savage M. After the crisis? Big Data and the methodological challenges of empirical sociology // Big Data & Society. 2014. Vol. 1, No. 1. DOI: 10.1177/0038038507080443
Thrift N. Knowing Capitalism. London: SAGE Publications Ltd, 2005. 256 p. DOI: 10.4135/9781446211458
Gane N. Measure, Value and the Current Crises of Sociology // The Sociological Review. 2011. Vol. 59, No. 2. P. 151–173. DOI: 10.1111/j.1467-954X.2012.02054.x
Ignatow G. Sociological Theory in the Digital Age. 1st ed. New York: Routledge, 2020. 120 p. DOI: 10.4324/9780429292804
Kitchin R., Lauriault T.P. Small data in the era of big data // GeoJournal. 2015. Vol. 80, No. 4. P. 463–475. DOI: 10.1007/s10708-014-9601-7
de Vreese C.H. et al. Linking Survey and Media Content Data: Opportunities, Considerations, and Pitfalls / C.H. de Vreese, M. Boukes, A. Schuck, R. Vliegenthart, L. Bos, Y. Lelkes // Communication Methods and Measures. 2017. Vol. 11, No. 4. P. 221–244. DOI: 10.1080/19312458.2017.1380175
Stier S. et al. Integrating Survey Data and Digital Trace Data: Key Issues in Developing an Emerging Field / S. Stier, J. Breuer, P. Siegers, K. Thorson // Social Science Computer Review. 2020. Vol. 38, No. 5. P. 503–516. DOI: 10.1177/0894439319843669
Beninger K. et al. Understanding Society: How people decide whether to give consent to link their administrative and survey data / K. Beninger, A. Digby, G. Dillon, J. MacGregor // Understanding Society Working Paper Series. 2017. No. 13. 65 p.
Webb E.J. et al. Unobtrusive measures: nonreactive research in the social sciences / E.J. Webb, D.T. Campbell, R.D. Schwartz, L. Sechrest. Chicago: Rand McNally, 1966. 220 p.
Bouchard Jr T.J. Unobtrusive Measures: An Inventory of Uses // Sociological Methods & Research. 1976. Vol. 4, No. 3. P. 267–300. DOI: 10.1177/004912417600400301
Hill A.D., White M.A., Wallace J.C. Unobtrusive measurement of psychological constructs in organizational research // Organizational Psychology Review. 2014. Vol. 4, No. 2. P. 148–174. DOI: 10.1177/2041386613505613
Lee R.M. Unobtrusive Methods // Handbook of Research Methods in Health Social Sciences / Ed. by P. Liamputtong. Wiesbaden: Springer VS, 2019. P. 491–507. DOI: 10.1007/978-981-10-5251-4_85
Девятко И.Ф. Инструментарий онлайн-исследований: попытка каталогизации // Онлайн-исследования в России 3.0 / Отв. ред. И.Ф. Девятко, А.В. Шашкин, С.Г. Давыдов; науч. ред. И.Ф. Девятко. М.: OMI RUSSIA, 2012. С. 17–30.
Дудина В.И. Цифровые данные – потенциал развития социологического знания // Социологические исследования. 2016. № 9. С. 21–30.
Lee R.M. Unobtrusive Measures in Social Research. Philadelphia, PA: Open University Press. 2000. 192 p.
Kalokyri V. et al. Integration and Exploration of Connected Personal Digital Traces / V. Kalokyri, A. Borgida, A. Marian, D. Vianna // Proceedings of the ExploreDB’17. Chicago, IL: ACM, 2017. DOI: 10.1145/3077331.3077337
Araujo T., Neijens P. Unobtrusive Measures for Media Research // The International Encyclopedia of Media Psychology. 1st ed. / Ed by J. Bulck. Hoboken, NJ: Wiley Blackwell, 2020. P. 1–7. DOI: 10.1002/9781119011071.iemp0049
Девятко И.Ф. Новые данные, новая статистика: от кризиса воспроизводимости к новым требованиям к анализу и представлению данных в социальных науках // Социологические исследования. 2018. № 12. С. 30–38.
Федорова А.А., Николаенко Г.А. Нереактивная стратегия: применимость незаметных методов сбора социологической информации в условиях web 2.0 на примере цифровой этнографии и big data // Социология власти. 2017. T. 29, № 4. С. 36–54.
Savage M., Burrows R. The Coming Crisis of Empirical Sociology // Sociology. 2007. Vol. 41, No. 5. P. 885–899. DOI: 10.1177/0038038507080443
Couper M.P. Is the Sky Falling? New Technology, Changing Media, and the Future of Surveys // Survey Research Methods. European Survey Research Association. 2013. Vol. 7, No. 3. P. 145–156. DOI: 10.18148/SRM/2013.V7I3.5751
Beaulieu A. Sociable hyperlinks: an ethnographic approach to connectivity // In Virtual Methods: issues in social research on the Internet / Ed by C. Hine. Oxford: Berg, 2005. P. 183–198.
Hine C. Internet Research and Unobtrusive Methods // Social Research Update. 2011. No. 61. P. 1–4.
Dirksen V., Huizing A., Smit B. ‘Piling on layers of understanding’: the use of connective ethnography for the study of (online) work practices // New Media & Society. 2010. Vol. 12, No. 7. P. 1045–1063. DOI: 10.1177/1461444809341437
De Heer W., De Leeuw E. Trends in household survey nonresponse: A longitudinal and international comparison // Survey nonresponse. 2002. Vol. 41, P. 41–54.
Nonresponse in Social Science Surveys: A Research Agenda / Ed. By R. Tourangeau, T.J. Plewes. Washington, DC: The National Academies Press, 2013. 151 p.
Čehovin G., Bosnjak M., Lozar Manfreda K. Item Nonresponse in Web Versus Other Survey Modes: A Systematic Review and Meta-Analysis // Social Science Computer Review. 2022. DOI: 10.1177/08944393211056229
Lazer D.et al. Computational social science / D. Lazer, A. Pentland, L. Adamic, S. Aral, A.-L. Barabási, D. Brewer, N. Christakis, N. Contractor, J. Fowler, M. Gutmann, T. Jebara, G. King, M. Macy, D. Roy, M. Van Alstyne // Science. 2009. Vol. 323, No. 5915. P. 721-723. DOI: 10.1126/science.1167742
Keeter S., Christian L. A comparison of results from surveys by the Pew Research Center and Google Consumer Surveys. Washington, DC: Pew Research Center, 2012. 30 p.
Graham M., Hale S.A., Gaffney D. Where in the world are you? Geolocation and language identification in Twitter // The Professional Geographer. 2014. Vol. 66, No. 4. P. 568–578. DOI: 10.1080/00330124.2014.907699
Conrad F.G. et al. Social Media as an Alternative to Surveys of Opinions About the Economy / F.G. Conrad, J. A. Gagnon-Bartsch, R. A. Ferg, M. F. Schober, J. Pasek, E. Hou // Social Science Computer Review. 2021. Vol. 39, No. 4. P. 489–508. DOI: 10.1177/0894439319875692
Schulz A. et al. A Multi-Indicator Approach for Geolocalization of Tweets / A. Schulz, A. Hadjakos, H. Paulheim, J. Nachtwey, M. Mühlhäuser // ICWSM. 2021. Vol. 7, No. 1. P. 573–582.
Stock K. Mining location from social media: A systematic review // Computers, Environment and Urban Systems. 2018. Vol. 71. P. 209–240. DOI: 10.1016/j.compenvurbsys.2018.05.007
Chen Q., Poorthuis A. Identifying home locations in human mobility data: an open-source R package for comparison and reproducibility // International Journal of Geographical Information Science. 2021. Vol. 35, No. 7. P. 1425–1448. DOI: 10.1080/13658816.2021.1887489
Campbell D.T., Fiske D.W. Convergent and discriminant validation by the multitrait-multimethod matrix // Psychological bulletin. 1959. Vol. 56, No. 2. Р. 81–105. DOI: 10.1037/h0046016
Bouchard Jr T.J. Field research methods: Interviewing, questionnaires, participant observation, systematic observation, unobtrusive measures // Handbook of industrial and organizational psychology. Vol. 1. / Ed. by M.D. Dunnette. Chicago: Rand McNally, 1976. P. 363–413.
Zeller R.A., Carmines E.G. Measurement in the social sciences: The link between theory and data. Cambridge; New York: Cambridge University Press, 1980. 198 p.
Pasek J. et al. Who’s Tweeting About the President? What Big Survey Data Can Tell Us About Digital Traces? / J. Pasek, C. A. McClain, F. Newport, S. Marken // Social Science Computer Review. 2020. Vol. 38, No. 5. P. 633–650. DOI: 10.1177/0894439318822007
Климова А.М., Куликов С.П., Чмель К.Ш. Роль социальных медиа в формировании регионального экологического протеста в России // Мониторинг общественного мнения: Экономические и социальные перемены. 2021. № 6. С. 28–52. DOI: 10.14515/monitoring.2021.6.2024
Shlomo N. Overview of Data Linkage Methods for Policy Design and Evaluation // Data-Driven Policy Impact Evaluation / Ed by N. Crato, P. Paruolo. Cham: Springer International Publishing, 2019. P. 47–65
Quinlan S. et al. ‘Show me the money and the party!’ – variation in Facebook and Twitter adoption by politicians / S. Quinlan, T. Gummer, J. Roßmann, C. Wolf // Information, Communication & Society. 2018. Vol. 21, No. 8. P. 1031–1049. DOI: 10.1080/1369118X.2017.1301521
Karlsen R., Enjolras B. Styles of Social Media Campaigning and Influence in a Hybrid Political Communication System: Linking Candidate Survey Data with Twitter Data // The International Journal of Press/Politics. 2016. Vol. 21, No. 3. P. 338–357. DOI: 10.1177/1940161216645335
Schober M. F. et al. Social Media Analyses for Social Measurement / M.F. Schober, J. Pasek, L. Guggenheim [et al.] // Public Opinion Quarterly. 2016. Vol. 80, No. 1. P. 180–211. DOI: 10.1093/poq/nfv048
Barbera P. et al. Who Leads? Who Follows? Measuring Issue Attention and Agenda Setting by Legislators and the Mass Public Using Social Media Data / P. Barbera, A. Casas, J. Nagler [et al.]. // American Political Science Review. 2019. Vol. 113, No. 4. P. 883–901. DOI: 10.1017/S0003055419000352
Девятко И.Ф. Диагностическая процедура в социологии: Очерк истории и теории. М.: Наука, 1993. 175 с.
Iannelli L. et al. Facebook Digital Traces for Survey Research: Assessing the Efficiency and Effectiveness of a Facebook Ad–Based Procedure for Recruiting Online Survey Respondents in Niche and Difficult-to-Reach Populations / L. Iannelli, F. Giglietto, L. Rossi, E. Zurovac // Social Science Computer Review. 2020. Vol. 38, No. 4. P. 462–476. DOI: 10.1177/0894439318816638
Kosinski M., Stillwell D., Graepel T. Private traits and attributes are predictable from digital records of human behavior // Proceedings of the national academy of sciences. 2013. Vol. 110, No. 15. P. 5802–5805. DOI: 10.1073/pnas.1218772110
Девятко И.Ф. От «виртуальной лаборатории» до «социального телескопа»: метафоры тематических и методологических инноваций в онлайн-исследованиях // Онлайн-исследования в России: тенденции и перспективы / Под общ. ред. А.В. Шашкина, И.Ф. Девятко, С.Г. Давыдова. М.: Онлайн маркет интеллидженс, 2016. С. 19–33.
Afriat H. et al. “This is capitalism. It is not illegal”: Users’ attitudes toward institutional privacy following the Cambridge Analytica scandal / H. Afriat, S. Dvir-Gvirsman, K. Tsuriel, L. Ivan // The Information Society. 2021. Vol. 37, No. 2. P. 115–127. DOI: 10.1080/01972243.2020.1870596
Diaz F. et al. Online and Social Media Data As an Imperfect Continuous Panel Survey / F. Diaz, M. Gamon, J. M. Hofman, E. Kıcıman, D. Rothschild // PLoS ONE 2016. Vol. 11, No. 1. P. e0145406. DOI: 10.1371/journal.pone.0145406
Бызов А.А. Интеллектуальный анализ текстов в социальных науках // Социология: методология, методы, математическое моделирование (Социология: 4М). 2019. № 49. С. 131–160.
Lazer D. et al. The Parable of Google Flu: Traps in Big Data Analysis / D. Lazer, R. Kennedy, G. King, A. Vespignani // Science. 2014. Vol. 343, No. 6176. P. 1203–1205. DOI: 10.1126/science.1248506
Hofstra B. et al. B. Sources of Segregation in Social Networks: A Novel Approach Using Facebook / B. Hofstra, R. Corten, F. van Tubergen, N.B. Ellison // American Sociological Review. 2017. Vol. 82, No. 3. P. 625–656. DOI: 10.1177/0003122417705656
Henderson M. et al. Measuring Twitter Use: Validating Survey-Based Measures / M. Henderson, K. Jiang, M. Johnson, L. Porter // Social Science Computer Review. 2021. Vol. 39, No. 6. P. 1121–1141. DOI: 10.1177/0894439319896244
Vraga E.K., Tully M. Who Is Exposed to News? It Depends on How You Measure: Examining Self-Reported Versus Behavioral News Exposure Measures // Social Science Computer Review. 2020. Vol. 38, No. 5. P. 550–566. DOI: 10.1177/0894439318812050
Haenschen K. Self-Reported Versus Digitally Recorded: Measuring Political Activity on Facebook // Social Science Computer Review. 2020. Vol. 38, No. 5. P. 567–583. DOI: 10.1177/0894439318813586
Jürgens P., Stark B., Magin M. Two Half-Truths Make a Whole? On Bias in Self-Reports and Tracking Data // Social Science Computer Review. 2020. Vol. 38, No. 5. P. 600–615. DOI: 10.1177/0894439319831643
Shin J. How Do Partisans Consume News on Social Media? A Comparison of Self-Reports With Digital Trace Measures Among Twitter Users // Social Media + Society. 2020. Vol. 6, No. 4. DOI: 10.1177/2056305120981039
Hopp T. et al. Correlating Self-Report and Trace Data Measures of Incivility: A Proof of Concept / T. Hopp, C. J. Vargo, L. Dixon, N. Thain // Social Science Computer Review. 2020. Vol. 38, No. 5. P. 584–599. DOI: 10.1177/0894439318814241
Junco R. Comparing Actual and Self-Reported Measures of Facebook Use // Computers in Human Behavior. 2013. Vol. 29, No. 3. P. 626–631. DOI: 10.1016/j.chb.2012.11.007
Hessler J. Peoplemeter Technologies and the Biometric Turn in Audience Measurement // Television & New Media. 2021. Vol. 22, No. 4. P. 400–419. DOI: 10.1177/1527476419879415
Parry D.A. et al. A systematic review and meta-analysis of discrepancies between logged and self-reported digital media use / D.A. Parry, B.I. Davidson, C.J.R. Sewall, J.T. Fisher, H. Mieczkowski, D.S. Quintana // Nature Human Behaviour. 2021. Vol. 5, No. 11. P. 1535–1547. DOI: 10.1038/s41562-021-01117-5
Greenberg B.S.et al. Comparing Survey and Diary Measures of Internet and Traditional Media Use / B.S. Greenberg, M.S. Eastin, P. Skalski, L. Cooper, M. Levy, K. Lachlan // Communication Reports. 2005. Vol. 18, No. 1–2. DOI: 10.1080/08934210500084164
Araujo T. et al. ‘How Much Time Do You Spend Online? Understanding and Improving the Accuracy of Self-Reported Measures of Internet Use / T. Araujo, A. Wonneberger, P. Neijens, C. de Vreese // Communication Methods and Measures. 2017. Vol. 11, No. 3. P.173–90. DOI: 10.1002/9781119011071.iemp0049
Wonneberger A., Irazoqui M. Tell it like it is? Inaccuracies of selfreported TV exposure in comparison to people-meter data // Annual Conference of the International Communication Association. London, UK. 17–21 June 2013.
Prior M. The Immensely Inflated News Audience: Assessing Bias in Self-Reported News Exposure // Public Opinion Quarterly. 2009. Vol. 73, No. 1. P. 130–143. DOI: 10.1093/poq/nfp002
Boase J., Ling R. Measuring Mobile Phone Use: Self-Report Versus Log Data // Journal of Computer-Mediated Communication. 2013. Vol. 18, No. 4. P. 508–519. DOI: 10.1111/jcc4.12021
Ettema J.S. Explaining information system use with system-monitored vs. self-reported use measures // Public Opinion Quarterly. 1985. Vol. 49, No. 3. P. 381–387. DOI: 10.1086/268935
van der Voort T.H.A., Vooijs M.W. Validity of children’s direct estimates of time spent television viewing // Journal of Broadcasting & Electronic Media. 1990. Vol. 34, No. 1. P. 93–99. DOI: 10.1080/08838159009386729
Chang L.C., Krosnick J.A. Measuring the frequency of regular behaviors: Comparing the “typical week” to the “past week” // Sociological Methodology. 2003. Vol. 33, No. 1. P. 55–80. DOI: 10.1111/j.0081-1750.2003.t01-1-00127.x
Yanovitzky I. Effect of Call-In Political Talk Radio Shows on Their Audiences: Evidence from a Multi-Wave Panel Analysis // International Journal of Public Opinion Research. 2001. Vol. 13, No. 4. P. 377–397. DOI: 10.1093/ijpor/13.4.377
de Vreese C., Semetko H.A. News matters: Influences on the vote in the Danish 2000 euro referendum campaign // European Journal of Political Research. 2004. Vol. 43, No. 5. P. 699–722. DOI: 10.1111/j.0304-4130.2004.00171.x
van Spanje J., de Vreese C. Europhile Media and Eurosceptic Voting: Effects of News Media Coverage on Eurosceptic Voting in the 2009 European Parliamentary Elections // Political Communication. 2014. Vol. 31, No. 2. P. 325–354. DOI: 10.1080/10584609.2013.828137
McCombs M.E., Shaw D.L. The Agenda-Setting Function of Mass Media // Public Opinion Quarterly. 1972. Vol. 36, No. 2. P. 176–187. DOI: 10.1086/267990
Geers S., Bos L. Priming Issues, Party Visibility, and Party Evaluations: The Impact on Vote Switching // Political Communication. 2017. Vol. 34, No. 3. P. 344–366. DOI: 10.1080/10584609.2016.1201179
Hopmann D.N. et al. Effects of Election News Coverage: How Visibility and Tone Influence Party Choice / D.N. Hopmann, R. Vliegenthart, C.H. De Vreese, E. Albæk // Political Communication. 2010. Vol. 27, No. 4. P. 389–405. DOI: 10.1080/10584609.2010.516798
Matthes J. Exposure to Counterattitudinal News Coverage and the Timing of Voting Decisions // Communication Research. 2012. Vol. 39, No. 2. P. 147–169. DOI: 10.1177/0093650211402322
Mellon J., Prosser C. Twitter and Facebook are not representative of the general population: Political attitudes and demographics of British social media users // Research & Politics. 2017. Vol. 4, No. 3. DOI: 10.1177/2053168017720008
Stier S. et al. Election Campaigning on Social Media: Politicians, Audiences, and the Mediation of Political Communication on Facebook and Twitter / S. Stier, A. Bleier, H. Lietz, M. Strohmaier // Political Communication. 2018. Vol. 35, No. 1. P. 50–74. DOI: 10.1080/10584609.2017.1334728
Beauchamp N. Predicting and Interpolating State‐Level Polls Using Twitter Textual Data // American Journal of Political Science. 2017. Vol. 61, No. 2. P. 490–503. DOI: 10.1111/ajps.12274
O’Connor B. et al. From tweets to polls: Linking text sentiment to public opinion time series / B. O’Connor, R. Balasubramanyan, B. R. Routledge, N.A. Smith // Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media. Palo Alto, CA: AAAI Press, 2010. P. 122–129.
Olsson T. An indispensable resource: The Internet and young civic engagement // Young Citizens and New Media: Learning for democratic participation. New York: Routledge, 2013. P. 197–214.
Bennett W.L., Wells C., Freelon D. Communicating citizenship online: Models of civic learning in the youth web sphere // A Report from the Civic Learning Online Project. 2009. 41 p.
Giglietto F. If Likes Were Votes: An Empirical Study on the 2011 Italian Administrative Elections // SSRN Journal. 7 May 2012. DOI: 10.2139/ssrn.1982736
MacWilliams M.C. Forecasting Congressional Elections Using Facebook Data // APSC. 2015. Vol. 48, No. 4. P. 579–583. DOI: 10.1017/S1049096515000797
DiGrazia J. et al. More Tweets, More Votes: Social Media as a Quantitative Indicator of Political Behavior / J. DiGrazia, K. McKelvey, J. Bollen, F. Rojas // PLoS ONE. 2013. Vol. 8, No. 11. DOI: 10.1371/journal.pone.0079449
Bach R.L. et al. Predicting Voting Behavior Using Digital Trace Data / R.L. Bach, C. Kern, A. Amaya, F. Keusch, F. Kreuter, J. Hecht, J. Heinemann // Social Science Computer Review. 2021. Vol. 39, No. 5. P. 862–883. DOI: 10.1177/0894439319882896
Jungherr A., Jürgens P., Schoen H. Why the Pirate Party Won the German Election of 2009 or The Trouble with Predictions: A Response to Tumasjan A. Sprenger T.O., Sander P.G., & Welpe I.M. “Predicting Elections with Twitter: What 40 Characters Reveal About Political Sentiment” // Social Science Computer Review. 2012. Vol. 30, No. 2. P. 229–234. DOI: 10.1177/0894439311404119
Guess A.M. Measure for Measure: An Experimental Test of Online Political Media Exposure // Political Analysis. 2015. Vol. 23, No. 1. P. 59–75. DOI: 10.1093/pan/mpu010
Vraga E., Bode L., Troller-Renfree S. Beyond Self-Reports: Using Eye Tracking to Measure Topic and Style Differences in Attention to Social Media Content // Communication Methods and Measures. 2016. Vol. 10, No. 2–3. P. 149–164. DOI: 10.1080/19312458.2016.1150443
Colleoni E., Rozza A., Arvidsson A. Echo Chamber or Public Sphere? Predicting Political Orientation and Measuring Political Homophily in Twitter Using Big Data: Political Homophily on Twitter // Journal of Communication. 2014. Vol. 64, No. 2. P. 317–332. DOI: 10.1111/jcom.12084
Nelson J.L., Webster J.G. The Myth of Partisan Selective Exposure: A Portrait of the Online Political News Audience // Social Media + Society. 2017. Vol. 3, No. 3. DOI: 10.1177/2056305117729314
Connelly R. et al. The role of administrative data in the big data revolution in social science research / R. Connelly, C. Playford, V. Gayle, C. Dibben // Social Science Research. 2016. Vol. 59. DOI: 10.1016/j.ssresearch.2016.04.015
Yoshida Y., Haan M., Schaffer S. Administrative data linkage in Canada: Implications for sociological research // Canadian Review of Sociology. 2022. Vol. 59, No. 2. P. 251–270. DOI: 10.1111/cars.12376
Harron K. et al. Challenges in administrative data linkage for research / K. Harron, C. Dibben, J. Boyd, A. Hjern, M. Azimaee, M.L. Barreto, H. Goldstein // Big Data & Society. 2017. Vol. 4, No. 2. DOI: 10.1177/2053951717745678
Choi K.H., Ramaj S., Haan M. Age of the oldest child and internal migration of immigrant families: A study using administrative data from immigrant landing and tax files // Population Space and Place. 2021. Vol. 27, No. 4. DOI: 10.1002/psp.2409
Rampazzo F. et al. A Framework for Estimating Migrant Stocks Using Digital Traces and Survey Data: An Application in the United Kingdom / F. Rampazzo, J. Bijak, A. Vitali, I. Weber, E. Zagheni // Demography. 2021. Vol. 58, No. 6. P. 2193–218. DOI: 10.1215/00703370-9578562
Brown J.R. et al. Childhood cross-ethnic exposure predicts political behavior seven decades later: Evidence from linked administrative data / J.R. Brown, R.D. Enos, J. Feigenbaum, S. Mazumder // Science Advances. 2021. Vol. 7, No. 24. DOI: 10.1126/sciadv.abe8432
Vatsalan D. et al. Privacy-Preserving Record Linkage for Big Data: Current Approaches and Research Challenges / D. Vatsalan, Z. Sehili, P. Christen, E. Rahm // Handbook of Big Data Technologies / Ed. by A.Y. Zomaya, S. Sakr. Cham: Springer International Publishing, 2017. P. 851–895. DOI: 10.1007/978-3-319-49340-4_25
Dibben C. et al. The data linkage environment / C. Dibben, M. Elliot, H. Gowans, D. Lightfoot // Methodological Developments in Data Linkage. Chapter 3 / Ed. by K. Harron, C. Dibben, H. Goldstein. London: Wiley, 2015. P. 36–62. DOI: 10.1002/9781119072454.ch3СтатьяПоступила: 11.05.2022
Опубликована: 17.12.2022
ВыпускРазделОНЛАЙН-ИССЛЕДОВАНИЯ